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The weighted average flux method (waF) for general hyperbolic conservation laws
g was formulated by Toro. Here the method is specialized to the time-dependent Euler
/5;\”‘ equations of gas dynamics. Several improvements to the technique are presented.
—_ These have resulted from experience obtained from applying waF to a variety of
< realistic problems. A hierarchy of solutions to the relevant Riemann problem,
> s ranging from very simple approximations to the exact solution, are presented. Their
8 L[: performance in the war method for several test problems in one and two dimensions
— is assessed.
= O
LT O
=« 1. Introduction

A significant contribution to the current state of modern computational fluid
dynamics (cFD) has come via Riemann-problem based, or Godunov-type, numerical
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500 E. F. Toro

methods. These are extensions of the first-order accurate method of Godunov (1959).
Riemann-problem based methods (or R methods for short) are directly applicable to
time-dependent one-dimensional systems of hyperbolic conservation laws or to two-
dimensional systems that are hyperbolic in a time-like variable (e.g. the two-
dimensional steady supersonic Euler equations). Extensions of these methods to
multi-dimensional problems is carried out via the finite volume method coupled with
one-dimensional physics in the direction normal to the control volume interface.

Many workers have contributed to the development of RP methods; outstanding
examples are Godunov (1959), van Leer (1979), Roe (1981), Harten (1983), Osher
(1984).

RP methods use the solution of the Riemann problem with data in volumes (z,7+ 1)
to define an intercell numerical flux F,,; to be used in the conservative, explicit
formula

Ut = U7 — (At/Ax) (Fyy—Fy).

The various RP methods differ in the definition for the intercell flux #;,;, in the way
the local Riemann problem solution is used and in the way higher accuracy without
the spurious oscillations of traditional methods is achieved.

The weighted average flux (WaF) approach for systems of hyperbolic conservation
laws was presented by Toro (1989 ). This method achieves second-order accuracy by
using the conventional piecewise constant data Riemann problem. Also, it is
sufficiently flexible to accept virtually any approximation to the solution of the local
Riemann problem as well as the exact solution. This second feature can be taken
advantage of by constructing a hierarchy of Riemann solvers to be used in an
adaptive Riemann solver fashion.

The war method has been applied to a variety of realistic flow situations (Toro
19890, 1991, 1992). The experience gained in the exercise has resulted in further
developments and useful simplifications to the technique. In this paper we present
the method as applied specifically to the time-dependent Euler equations in one and
two space dimensions. An efficient exact Riemann solver as well as a variety of
approximate Riemann solvers that can be used with waFr are presented.

The paper is organized as follows. In §2 the method is presented in its current
formulation; §3 deals with Riemann solvers; in §4 we present the construction of the
oscillation-free version of the method. Some numerical results are presented in §5 and
conclusions are drawn in §6.

2. Formulations of the wAF method

For the purpose of this section we shall restrict ourselves to the time-dependent
one-dimensional Euler equations written in conservation form, namely

UA+1FU)], = 0. (1)

Here U is the vector of conserved variables and F(U) is the vector of the
corresponding fluxes, i.e.

p pu
U=|pu|, F=| pu*+p |. (2)
B u(E +p)

Phil. Trans. B. Soc. Lond. A (1992)
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The war method for the Euler equations 501
Figure 2
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Figure 1. Control volume of dimensions Az; by At is computational cell i. New value Ur*! is given
in terms of old value U? and intercell fluxes.

Figure 2. Solution of the Riemann problem with data U, and U in the af-plane. The three waves
present define four piecewise constant states. Solution is found in terms of the star region between
acoustic waves.

The conserved variables are: the density p, the momentum pu, where wu is the
velocity, and the total energy K, where £ = Jpu®+ pe with e denoting the specific
internal, or intrinsic, energy.

The symbols ¢ and « denote time and space and are the independent variables. The
associated subscripts in (1) denote partial differentiation. Note that there are more
dependent variables than there are equations and thus a closure condition is
required. We take the ideal gas equation of state as the closure condition, namely

e=ce(p,p)=p/ly—1)p (3)

with y denoting ratio of specific heats.

The Euler equations have discontinuous solutions (shock waves, contacts) and it
is therefore more appropriate to recast the differential equations (1) in integral form
as

%[’de——F(U)dt] =0. (4)

Consider a domain in the zt-plane discretized by a grid of dimensions Axz; and At as
shown in figure 1. Evaluation of the integral (4) around cell ¢ produces

Urt = Up — (At/Aa) [Fry—F, ] ()

with suitable interpretations for the discrete values of the conserved variables and
fluxes. This explicit conservative formula gives a time-marching scheme in terms of
the data U7, the grid dimensions and the intercell fluxes £, and F,_;. The notation
U? means the discrete value of U in cell 7 at time level ». For convenience, we often
omit the superscript n.

The scheme (5) is completely defined once the fluxes have been specified. Let us
consider F;,1. The war method assumes that all conserved variables have a piecewise
constant distribution in x at any time level n. Locally, two neighbouring constant
states (U, U, ,) are the initial data for the relevant differential (or integral) equations.
This initial value problem is known as the Riemann problem. In general, this local
problem is simpler to solve than the global problem. The global solution can be
constructed by using the sequence of local Riemann problems {RP(:,7+1)} in a
variety of ways, depending on the particular method in use. The solution of the

Phil. Trans. R. Soc. Lond. A (1992)

19 Vol. 341. A


http://rsta.royalsocietypublishing.org/

A
A

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
\
)

THE ROYAL A

A

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

502 E. F. Toro

Riemann problem for the unsteady one-dimensional Euler equations (1), when
represented on the xt-plane, looks as depicted in figure 2. There are three waves. The
middle wave is always a contact discontinuity. The left and right waves are called the
acoustic waves and can be either shocks or rarefactions. Contacts and shocks are
discontinuities, rarefaction waves are continuous solutions. We shall denote the
solution of the Riemann problem with data U and U_, by U*(x/t, U, U,,,) or simply
by U*(z/t). It is only a function of the similarity variable x/t. Note that we centre
the Riemann problem at the origin (0,0) in the x¢-plane.
Godunov (1959) is credited with being the first to use the solution of the local
Riemann problems to evaluate the numerical intercell flux £, in (5). Godunov’s flux
is given by
FEQP = F[UX0, T}, U,,)]. (6)

Note that U*(0,U, U_,) is constant for ¢ > 0. The density (and thus the internal
energy and the temperature) is constant in between the waves with discontinuous
jumps across shocks and contacts. The structure of the solution of the Riemann
problem contains therefore four constant states: U (left state data), U (left of
contact), U¥ (right of contact) and U, (right state data). Special care is needed in
the case when the value 2/t = 0 lies inside a rarefaction fan (sonic flow). The Godunov
method is only first-order accurate and is therefore too inaccurate to be used in
practice.

The war method (Toro 1989«) is a second-order extension of Godunov’s method.
Higher accuracy is achieved by snnply defining the intercell flux F,; as an integral
average of the flux function F(U) in (1) evaluated at the solution U*(x/t) of the
Riemann problem with data U, U, at time ¢ = 1A{.

Suppose the neighbouring cells vand i+1 have spacings Ax; and Az, ,, then the
warF flux is

1 1
FYpT = —-«J PO da+—— | P de,
" 2 2, J, (7)

1A 1
x, = —3An;;  xy = jAx,,

where U* = U(x/3At) is the solution of the Riemann problem with data U, U7, , at
time 3At. The integration in (7) goes from the centre of the left cell ¢ to the centre of
the right cell ¢+1 at time { = At = const. A simpler expression results by choosing

x, = —min (Az;, Az,,,), x,=3imin (Az,, Ax,,,).

The integration can be made as accurate as desired, but the presence of rarefaction
fans makes it more complicated, which for practical applications is undesirable.
Experience has indicated to us that acknowledging fans is only important in the
presence of sonic flow, that is, when one of the acoustic waves is a rarefaction centred
around the ¢-axis, and even in this case one may simplify the wave structure, as we
shall explain later. In any event, we assume that the solution of the Riemann
problem has N waves with IV associated wave speeds A,. For simplicity let us consider
the regular grid case with Ax; = Aw,,, = Ax. The Courant numbers v, associated with
the wave speeds A, are

Ve = A/ (Ax/At). (8)
Phil. Trans. R. Soc. Lond. A (1992)
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Figure 3. Evaluation of the intercell numerical flux for the war method. The simplified wave
structure in the solution of the Riemann problem gives four regions % of non-dimensional length

W,. (i) de/dt = A,; (i) dz/dt = A, = w*; (iii) dz/dt =

The war flux can then be written as
+
F= Z o 9)

where the coefficients I, (or weights) are the geometric extents of the constant states
in the integral (7). F{%} is the flux function ¥ in (1) evaluated at the solution of the
Riemann problem in region k. Figure 3 illustrates the situation. It is easy to see that
the weights W, can be written in terms of the Courant numbers v, as follows

We=30k=veq), vo=—1 and vy, =1 (10)

Note that W, > 0 for all k£ and that ZY W, = 1.

Clearly F}{f¥ gives an extension of the first-order Godunov method, for if W, = 1
and W, =0 for all k# K in (9) F}{{" reproduces the Godunov flux. The region K
is that associated with z/t = 0. The wave structure of the local Riemann problem
RP(i,7+1) determines which weight corresponds to the Godunov’s method. For
instance, if the flow is fully supersonic, i.e. A; > 0 then W, is the Godunov’s weight.
If A, < 0, then the Godunov’s weight is W, etc. The case of t-axis centred expansion
fans will be dealt with later when discussing solutions of the Riemann problem.

The Godunov’s weight represents the upwind bias of the war scheme and controls
stability. All other weights represent downwind econtributions; they increase
accuracy. When applied to the model hyperbolic equation

u,+au, =0, a = const. (11)

the war method reduces identically to the Lax—Wendroff method and it is therefore,
for this model equation, second-order accurate in space and time. For nonlinear
hyperbolic systems the numerical results are like those obtained by typical second-
order accurate methods.

A disadvantage of the added accuracy of the war scheme is that spurious
oscillations near high gradients are produced. This is in accordance with the well-

Phil. Trans. R. Soc. Lond. A (1992)
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504 E.F. Toro

known Godunov’s theorem (Godunov 1959). An oscillation free version of the method
will be presented in §4. This is different from that given in the original paper (Toro
1989a) and simpler to implement in practice.

The war flux can be expressed, after using (10) in (9), as

1 N
FWAF sLF+ 8, +1]_§ % VIcAFz(']%a (12)
k=1
where AF{: = FETY —F#) (13)

is the flux jump across wave k.

Formulae (12) and (13) are more revealing. In particular, they expose the flux-
difference splitting character of the method. Also, expression (12) makes is easier to
compare the similarities and differences of the war method with those of other
modern methods, such as Roe’s method (Roe 1981).

An alternative formulation of the war method is

AT = F(T,,y), (14)

where V, ;+1 is obtained by replacing the flux ¥ in (9) by an actual state V. There are
at least two choices for V, namely the vector of primitive variables (p,u,p) or the
vector of conserved variables (p, pu,E). In either case the average state can be
written as

N
Foog = Vi Vil =3 & 0 AV, (15)
k=1
where AV, = VD — Vi) (16)

is the jump in V across the wave k and V%1 is the value of V in region k.

From the point of view of computatlonal efficiency, formulae (14)—(16) are more
attractive than (12) and (13); there are fewer operations involved. Numerical
experiments show that the results of these two formulations are virtually
indistinguishable. The same remark applies to the choice of variables for the states
Vin (14)—(16). From a theoretical point of view it is of interest to note that if the state
Vin (15) represents the conserved variables then this formulation of the war method
makes it analogous to the Richtmyer—Morton method (Richtmyer & Morton 1967),
where

Vit v =3l Vit Vil —3(A/ Az [, — ). (17)
This can be immediately seen by integrating the conservation laws (1), or (4), in the
rectangle
—IAx <x <iAx, 0<i<iAL

The Richtmyer—Morton method is also known as the two-step Lax—Wendroff
method. For linear problems these two methods are identical. Thus version (14)—(16)
of war is formally identical to the Lax—Wendroff method, for linear problems, when
the vector V stands for conserved variables.

These traditional finite difference methods of Richtmyer & Morton and
Lax—Wendroff make no reference to the solution of the local Riemann problem. It is
this extra local information contained in the war method that will permit us to
modify it so as to retain second-order accuracy in smooth parts of the flow and
produce high resolution of discontinuities without spurious oscillations.

As a point of interest it is worth remarking that formulation (15) and (16) of war,

Phil. Trans. R. Soc. Lond. A (1992)
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The war method for the Euler equations 505

under certain special circumstances, may lead to entropy violating solutions
(rarefaction shocks). This depends entirely on the solution of the Riemann problem.

3. Riemann solvers

To apply the war method to the Euler equations (1) the solution of the associated
Riemann problem must be found. As seen in formulae (12) and (13), or (14)—(16), for
the intercell flux F,,; we require (i) the wave speeds A, (to compute the Courant
numbers v,) and (ii) the flux jumps, if (12) is used, or the state jumps, if (15) is used,
across the waves.

The exact solution of the Riemann problem is capable of producing all of this
information, accurately. Alternatively, one may use suitable approximations to the
exact solution. More attractive still, one may select exact or approximate values
depending on the local features of the flow. Near strong shocks for instance, where
approximations to the solution of the Riemann problem are bound to cause
difficulties, one can use the exact solution. Elsewhere one could use approximate
solutions. For ideal gases, the extra computing cost involved in finding the exact
solutions is not significant. Exact solvers have become very efficient (Toro 1987).
These statements also hold for covolume gases (Toro 1989¢). As to approximate
Riemann solvers there are several in current use in the literature. They all have
advantages and disadvantages and it is not possible to select a single one as the
universal Riemann solver. An attractive feature of the present numerical method is
the flexibility available when selecting the Riemann-problem solution.

(a) The exact solution of the Riemann problem

For ideal gases there are some very efficient exact Riemann solvers available. An
interesting survey was carried out by Gottlieb & Groth (1988), who also reported on
their own new solver.

Here we present a brief description of the ideal-gas version (Toro 1987) of an
efficient exact Riemann solver for covolume gases (Toro 1989¢). We briefly
summarize the main steps in finding the solution. We first note that both the pressure
p* and velocity u* between the acoustic waves (see figure 2) are constant. Then the
main step is to derive a single algebraic (nonlinear) equation for either the velocity
u* or the pressure p*. A point concerning notation, we shall often use V;, and Vg
instead of V, and V,,,, where V is a vector representing an appropriate set of variables
such as the conserved variables.

Following Toro (1987) we can write

So* W, Ve) = fulp™®, V) +fr(p*, Vi) +ug —uy, = 0, (18)
where the functions f; and fy are derived from relations across the acoustic waves on
the left and right. They depend on (i) the unknown pressure p* (ii) the data (¥, or
V) and (iii) the type of the acoustic wave (either shock or rarefaction). These
functions are found to be

_ {(HL—— 1) {2py/pul(y +1)Hy+y—11%, if Hy > 1 (shock), )
(2a./(y—1)[HF—1], if Hy <1 (rarefaction),
(Hg—1){2pg/(prl(y+1) Hg +y— 113} if Hg > 1 (shock),

{(QaR/(y—l))[H§~—1], if Hy <1 (rarefaction),

Phil. Trans. R. Soc. Lond. A (1992)
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506 E.F. Toro

Ap

U

Figure 4. Rarefaction (dashed line) and shock (full line) curves in the up-plane for two data
states U, and U. Solution of Riemann problem in the star region is given by U*.

where Hy, = p*/py, Hyg=p*/pg, m=(y—1)/2y (21)

and ay,, ay denote the sound speed on the left and right states respectively. As fin (18)
is monotone, a unique solution for physically admissible data exists, and thus a
Newton—Raphson iteration procedure for (18) to find p* works well, particularly if
a good initial guess is used. If in (19)—(21) one chooses the rarefaction branches the
following closed-form solution for p* is obtained, namely

* [aL+aR+(uL—uR) (y— 1)/2]1/m
’ ay/pr +ar/PR

(22)

For most of a typical flow domain this is a very accurate approximation. Figure
4 shows a comparison between the exact value and the approximation (22) for p*. It
can be seen that for pressure ratios H,, Hy below 4 the difference is almost negligible.
In any event, pi is a good guess for an iteration procedure. For very strong shocks
a converged exact solution is achieved in about three iterations. Once p* has been
found u* follows as
u* = ug+fr, or u*=u,—f,
or a mean value.
w* = Huy +ug) +3(fr—fu)- (23)

The next step is to find the density values p¥ and p¥ either side of the contact
discontinuity. These again depend on the type of acoustic waves present. The
solution is

pr, HYY, if H; <1 (rarefaction),

Pt = o
(y+O)H +y—1] .
pL[(v—l)HL+y+1 , if  Hy > 1 (shock),

prHY, if Hy <1 (rarefaction),
and Pk = (25)

(y+1)Hyg+y—1 .
R[('}/~1)HR+7+1 , if Hy > 1 (shock).

Phil. Trans. R. Soc. Lond. A (1992)
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The war method for the Euler equations 507

(i) Choice of wave speeds

In implementing the waF method, there is no ambiguity in choosing the wave
speeds when the waves are contact or shock waves. For a rarefaction wave one could,
in principle, choose the speed associated with the tail, the head or any ray in between
them. We believe it is more appropriate, on stability grounds, to choose the speed
associated with the head of the rarefaction as the representative speed of the wave.
Hence the speeds A, are given as follows

uy,—ay, if Hy <1,
M z{uL—aL[1+((y+ 0)/2y) (H,— O} if Hy> 1,
A, = u*, always, (26)
ugp+ag if Hy <1,
{uR+aR[1+((y+1)/2y) (Hg—1)] if Hg > 1.

(ii) Sonic flow

The last case to consider is that of rarefaction waves for which the speeds
associated with the head and tail have opposite signs (sonic flow). In this case the
Godunov flux (6) (upwind part of the war method) is found by evaluating F' inside
the fan along the ray x/¢t = 0. For a left ‘sonic’ rarefaction fan the solution for u, a,
p and p along z/t =0 is

w=(2/(y+D)lay+ily—Dugl, a=a,+3(y—1) (ML—M),}

- (27)
p = pula/ap)’ 0, p=py(p/pL).
Similarly, for a right ‘sonic’ rarefaction we have
w=2/(y+ ) By—Dug—agl, @=ag+iy—1)(@—ug), o8
p = prla/ag)” "™, p = prlp/pr)"-

Sonic flow is tested for by using the wave speeds u;—a;, and u*—af for a left
rarefaction and ug +agx and u*+a¥ for a right rarefaction, where a;, and af are the
sound speeds either side of the contact discontinuity.

All the information necessary to implement the war method for the Euler
equations (1) using an exact Riemann solver is now available to us. This can be used
to compute the intercell flux F;,; in (12) or (15) and march in time according to (5).
Application of the method as it stands will produce spurious oscillations near high
gradients. The oscillation free version of the method is presented in §4.

The remaining part of this section is devoted to approximate Riemann solvers. We
point out that this is not an exhaustive study on approximate Riemann solvers.

(b) 4 two-rarefaction Riemann solver (TR)

In the exact Riemann solver the character of the acoustic waves is not known in
advance; it is part of the iterative solution procedure. These waves can be either
shocks or rarefactions (see figure 2). The two-rarefaction approximation assumes
that, out of the four possible wave configurations, the only one that is admissible is
that in which both acoustic waves are rarefactions.

Phil. Trans. R. Soc. Lond. A (1992)
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508 E.F. Toro
Across the left wave we have
af = ay(p*/p)" (29)
and sty—hu*+af =3y—1Du,+ag. (30)

These equations follow from the isentropic relation and the constancy of the right
Riemann invariant across the left wave. The constant m is given in (21). Tt follows
that

w* =y —(2ay/(y—=1))[(p*/p)" —1]. (31)
For the right wave the corresponding equations are
af = ag(p*/pr)", (32)
sy—Du*—af =3(y—1)ug—ag, (33)
w* = ug+(2ag/(y—1) [(p*/pr)" —1]. (34)

Equations (31) and (34) give the solution for p* and u*, the pressure and velocity
between the acoustic waves. The solution for p* is

p* = [aL+aR+ (g, —ug) (y— 1)/2]1/7”
ay/py +ag /PR

(35)

This is the value suggested as an initial value for the iteration procedure leading
to the exact solution. The value for u* may be obtained from (31) or (34).
Alternatively, one may solve (31) and (34) for w*, instead of p*; the result is

Wk = Huy/ay+ug/ag+2(H—1)/(y—1)
Hiay+1/ag

with H = (pp/pr)" (37)
Then p* could be obtained from (31) or (34).

(36)

(i) Choice of wave speeds

The wave speeds A,, A, and A, in the present approximation can be chosen as follows
Ay =min{uy—ay, w*—af}, A, =u* A, =max{u*+af, ug+ag), (38)

where the sound speeds af and af; are given by (29) and (32) respectively.

There are two more quantities to be found. These are p¥ and pf, the density either
side of the contact discontinuity. One could use isentropic relations directly but since
a¥ and a¥ are known one has

pL. = yp*/at?, PR = yp*/aR. (39)

Finally, the test for sonic flow is as in the previous section and the solution is as
given in equations (27) or (28).

All the information needed to compute the intercell flux (12) and (13), or (14)—(16)
using the TR approximation is now available.

One would expect the TR approximation to be poor for flows containing strong
shocks. For flows near vacuum conditions, however, the TR approximation is
remarkably good. In fact, for near-vacuum conditions generated by two rarefaction
waves travelling in the opposite directions this approximation is exact.

Phil. Trans. R. Soc. Lond. A (1992)
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The war method for the Euler equations 509

(¢) A two-shock Riemann solver (Ts)

The two-shock approximation to the solution of the Riemann problem assumes
a prior: that the acoustic waves are both shock waves. This approximation does not
produce a closed-form solution as does the TR approximation of the previous section,
not even for gases obeying the ideal equation of state. The only advantages is that
the logic in the iteration procedure to solve (18) for p* is simplified. One uses the
shock relations in (19) and (20), regardless of the value of H, and Hy; two ‘IF’
statements are thus eliminated in the iteration procedure of the exact solver. This is
not a significant gain, particularly if one realizes that the shock expressions require
more operations. For implementations in vector machines however, the elimination
of the logic can be significant.

Dukowicz (1985) introduced an approximation to the Ts approximation. The
iteration procedure is eliminated but complex logic is introduced to evaluate various
expressions. One merit of the Dukowicz two-shock approximations is that it applies
to materials with general equation of state.

(d) Roe’s approximate Riemann solver

Roe’s Riemann solver makes use of the fact that for linear hyperbolic systems of
the form (1) the flux difference between right (R) and left states (L) can be expressed
as

N
FR—FP = X oy A1, (40)
k=1

where N is the number of waves in the Riemann problem with data U, and Uy, a, are
the wave strengths and A, are the respective wave speeds which here are chosen as
the eigenvalues of the jacobian matrix

J = oF/aU. (41)

Note that (40) is the component s associated with the flux vector in (1).

The symbol 7 is used to denote the appropriate component of the right
eigenvectors of J. Each term k£ in the summation (40) represents the effect of the
single wave k. Note that for linear systems with constant coefficients the jacobian
matrix J in (41) is constant.

Roe’s approximate Riemann solver for nonlinear hyperbolic systems assumes
that, locally, the jacobian matrix J, evaluated at a suitable average state, is still
constant and also that the difference in states U, U (data for the local Riemann
problem) satisfies

N
UR—UP = 3 o r. (42)
k=1

It is now a question of choosing a suitable average state to evaluate o, A, and r
in (40). Roe (1981) suggested the following average values for the density p, velocity
u, enthalpy » and sound speed a

= (pLpr): &= (Vpyu,++Vprur)/(VpL+VPR) (43a, b)
h=(pLho+Vprhg)/ (VoL ++/pr) @=1{(y—1)h—3a")}. (43¢, d)
The specific enthalpy & in (43¢) is
h=(B+p)/p. (44)
Phil. Trans. R. Soc. Lond. A (1992)
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510 E.F. Toro
In terms of the average values (43) the wave speeds A, become
AN =d—d, A=, Ay=i+d. (45)

The wave strengths are
b, = (1/28%) [Ap—paAu], a,=Ap—Ap/a®, &, = (1/2a%)[Ap+paAu]. (46a—c)

Here Ap = pg—py, Au = ug —uy, Ap = pr—py.
The averaged right eigenvectors are

1 1 1
R, =| @—a |, RF[a], R,=| @+a |. (47)
h—aal 12 h+ it

When it comes to use the Roe approximate solution of the Riemann problem in the
evaluation of the intercell flux ¥, ; for the war method, there are at least two choices.
We shall now explain each of them separately.

(e) Re-interpretation of Roe’s solver

The approximation to the solution of the Riemann problem does not contain at
least explicitly, information about the states between the acoustic waves, namely p¥*,
uw*, p¥ and p%. The Roe average values are not identical to the ‘star’ values between
the acoustic waves. However, the Roe approximation can be used to obtain
approximate values for the ‘star’ states.

The change AU® = U — U for each conserved variable s is the summation of the
changes across each individual wave, i.e.

3
AU® = % AU,
k=1

In the Roe approximation one has AU +1 = o, . Thus across the right wave the
density jump is pg —p§ = &, 7Y = a, and hence

Ph = pr— 3. (48)
Similarly, the value p¥ is given by
Pt = prtay. (49)

To find w* we use the jump in momentum across a single acoustic wave. Using the
right wave we have

PRu* = pyuy—dy(i+4a),
which gives u* = (pgur— (A +a))/pk.
If one uses the left wave then

* = (py,uy,+ 8, (@— @)/ .

For acoustic waves in which the wave strengthens &, and &, are very different it
might be advisable to take the mean value for u* as

Wk = E{PLML'FONH(@_@)+PR“R_&3(QZ+d)]
2 pLT % Pr— %
Phil. Trans. R. Soc. Lond. A (1992)
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The war method for the Euler equations 511

The solution for p* can be found from the energy equation. If one uses the right-
going wave then N
p* = (y—1)[Ex—gpf u* —&y(h+ad)].
Use of the left going wave would give another expression for p*. As for u*, a mean
value might be more suitable for p*, although this introduces more operations. The
mean value for p* is

p* = Yy — 1) By, + By + &, (h—0d) — &y(h+ad) — 3u** (p¥ + p¥)]. (51)

In this interpretation of Roe’s Riemann solver one can use different wave speeds,
namely

A, = min {uy, —ap, u*—af}, A, =u* Ay = max {uy+ag,u*+ak}, (52a—c)

where the sound speeds af and af are computed from the values of equations (48),
(49) and (51).

This reinterpretation of Roe’s solver appears to be new and has some advantages,
particularly in two dimensions.

In the original meaning of the Roe approximation to the solution of the Riemann
problem the information given in (43)—(47) is used directly in (40) to produce Roe’s
method with intercell flux:

N

1
52 o Al e (53)

F,
2,5

= HF A+ Fa)—

N|»-‘

(see Roe (1986) for details).

(f) The Harten—Lax—van Leer Riemann solver (HLL)

A very simple type of approximations to the solution of the Riemann problem was
proposed by Harten et al. (1983). Their basic assumption is that the only waves
present are the left and right acoustic waves. If estimates A, and A, for the lower and
upper limits of the speeds of these acoustic waves are available then one can easily
solve for the conserved variables and fluxes in the ‘star’ region between the acoustic
waves.

Consider figure 5. Evaluation of the integral (5) in the rectangle ABCD gives
Up—2A U, —(Fy—Fy)

_/\3
= R , (54)

where U}, is the vector of conserved variables between the acoustic waves. These
values can be used directly to either compute fluxes between the acoustic waves, if
version (12) of WAF is to be used, or they can be used to compute a weighted average
state, if version (14) of WAF is to be used. For the former version of WAF, one can also
compute a ‘star’ flux directly as

My By — Ay Fy+ A, Ay(Ug — L)
Xs—A, '

Expressions (54) and (55) are only valid for the case of figure 5, i.e. A, <0 and
A3 > 0.

This approximate Riemann solver has one intermediate ‘star’ state only. That is
to say, the density (temperature or internal energy) is assumed constant across the
contact discontinuity. As a consequence, contact discontinuities are badly smeared.

k= (55)

Phil. Trans. R. Soc. Lond. A (1992)
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512 E.F. Toro

The major problem with this Riemann solver is to find reliable and sufficiently
simple estimates A, and A, for the lower and upper bounds for the wave speeds. Davis
(1988) proposed a number of procedures for these wave-speed estimates. There is
scope for the imagination in choosing the wave estimates. An important consideration
in doing so is the entropy condition (see Harten (1983) and Harten ef al. (1983) for
details).

A possible choice for A; and A, in (54)—(55) is the wave speeds given by the Roe
approximation (equation (45)), provided the entropy fix has been incorporated into
the Roe scheme. On the subject of an entropy fix for the Roe solver the reader is
referred to Harten & Hyman (1983).

Davis made the interesting observation that the choice

Xy = Ax/At, A, =—2, (56)

gives a flux F,; associated with the Lax—Friedrich’s scheme. Other obvious choices
reproduce ‘star’ fluxes F; associated with familiar schemes, such as the Rusanov
method (see Sod 1978).

Here we present another way of choosing estimates A, and A, for the wave speeds.
Consider the isentropic equations of gas dynamics. This is a 2x2 system of
hyperbolic equations with eigenvalues (wave speeds) A, =u—a and Ay = u+a.
Assume that the two waves in the Riemann problem for the isentropic equations are
rarefaction waves. Then we can find solutions for the speed u* and the sound speed
a* between the acoustic waves. These are

w* = Huy +ug) +(ag,—ag)/(y—1), } (57)
a* = ay+ag)+ (y—1)/(ug,—ug).
Then choose
Ay =min{uy,—ap, u*—a*}, A; = max {ug +ag, u*+a*}. (58)

Application of war with the HLL Riemann solver using the wave speeds (57) and (58)
gives very satisfactory results. It is worth remarking that for rarefaction waves the
estimates are always correct, but for shocks they may fail to bound the shock speed.
A possible improvement is as follows.

Using estimates (57) and (58) and the integral form of the Euler equations (4) on
the rectangle ABCD of figure 5 one obtains (54) for the conserved variables (p, pu,
E)T between the acoustic waves. Denoting the right-hand side of (54) by R one has
the vector equation

(0%, p* w*, BT = (Ry, Ry, R,)". (59)
Hence
pr =Ry, uw*=R,/R,, p*=(y—1)R;—3R3/R,). (60)

A new sound speed a* = (yp*/p*)i can now be computed from (60). Then we set
A; and Az as in (58) but with revised values for u* and a* given by (60).

The resulting scheme (58) for choosing the wave speeds together with the
modification (60) gives a very simple version of the uLL Riemann solver. Extensive
numerical experiments carried out by the author (unpublished) also show that the
resulting numerical methods are very robust.

The L Riemann solver, particularly with the proposed modification performs
very well indeed for 2x2 hyperbolic systems (e.g. shallow water equations or

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 5. Simplified wave structure for the HLL approximate Riemann solver.

Figure 6. Wave configuration for the modified HLL Riemann solver with restored contact wave.
() de/dt = Ay; (ii) de/dt = w* = A,; (iil) de/dt = A,.

isentropic gas dynamics). For larger systems, however, such as the Euler equations,
contact discontinuities or shear waves are ruined. One can remedy this anomaly of
the HLL solver by restoring the wave associated with the contact discontinuity as
follows.

Assume a wave configuration as in figure 6. Suppose we use the estimates (58)
derived from equations (60). Now we have an estimate for the wave speed of the
contact discontinuity, A, = w*. The integral equations (4), when evaluated on ABEF
of figure 6 give :

(A= A)UE+ (1 =2,/ ) FE =8, (61)
where S = A, Uy — A, U+ 1, — (A,/A,) Fy. (62)
If the integration of (4) is performed on the rectangle BCDE of figure 6 we obtain
(A=) UR = (L =23/ Ag) F = @ (63)
with Q= (A=) Uy — (1 =21,/ ;) Fy. (64)

The reader is reminded that (61) and (63) are vector equations, where U, as in (1)
stands for the vector of conserved variables (p, pu, E)*. Denote the right-hand side
vectors S and @ by (S;,8,,8;)" and (@,, @,, @;)" respectively, then application of (61)
to the first conserved variables p gives

(A=A, pi 4 (L= Ay/A5) w* pf = Sy, (65)
while (63) gives
(A3—Ag) R — (L= A/ A5) w* pit = Q. (66)

Taking u* = A, (known), (66) gives the density on the right-hand side of the

contact surface as
P = @1/ (A3 —A,(2— 2,/ A3)). (67)

The density p§ on the left-hand side of the contact surface is now given by (65) and

(67) as
* Sl (1_/\2/A3)A2Q1

L= ) () [y — A — A AT (68)

For a detailed description of a successful restoration of the contact surface for the
uLL Riemann solver the reader is referred to Toro et al. (1992).

Phil. Trans. R. Soc. Lond. A (1992)
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514 E. F. Toro

More on Riemann solvers for the time-dependent Euler equations can be found in
Toro (1991).

4. Construction of an oscillation-free WAF

Given the second-order character of the war method spurious oscillations near
high gradients are expected. In the original paper (Toro 1989a) it was demonstrated
that an oscillation-free version of WAF based on the flux-limiter concept can be
constructed. In this paper we present an alternative interpretation of the oscillation-
free method. Strictly speaking both oscillation-free versions are mathematically
equivalent, but the present formulation has some computational advantages, the
resulting scheme is neater and coding is significantly simpler.

We follow Toro (1989d), where a detailed oscillation-free construction for a model
equation was carried out. Consider the linear advection equation u, +au, = 0. Unless
otherwise stated we shall assume that the constant speed a is positive. Here u is the
conserved quantity and F(u) = au. At this stage we introduce the concept of total
variation of a discrete solution {/"}. The total variation of the solution at time level
n, denoted by TV (u"), is defined as

V(") = Zluf, —uf|. (69)

Note that this is essentially a measure of the oscillatory character of the solution.
A large class of useful difference schemes are those whose total variation
diminishes with time, i.e.
TVt < TV (u™).

Such schemes are called total variation diminishing schemes, or TvD schemes for short
(Harten 1983).

To apply wAF to (11) the Riemann problem for (11) must be solved. If the
initial data at time level n for the local Riemann problem RP(i,1+1) centred at z;
is u(t*, ) = u if v < w1 and w(t", x) = uy, if © > @, then the solution is trivial and
can be written as

{ug‘, if (x—a;0)/t <a,
u(x,t) = (70)

ufyy, if (x—2a)/t > a

Having solved the local Riemann problem RP(i,i+1) we can now evaluate the
intercell flux F,;. To this end it is instructive to use definition (9) for F; . Since we
are considering the case @ > 0, the upwind (or upstream) region lies to the left of the
characteristic line dz/df = @ and the downwind (or downstream) region lies to the
right of da/dt = a. The respective normalized lengths associated with these regions
are the weights

where v = a At/Ax is the Courant number associated with the wave speed a.

The intercell flux F,; becomes

Fyoy = 31+ v) au? +3(1—v) aul,, (72)

which is effectively a weighted average of the upwind and downwind parts of the
solution of the local Riemann problem. Note that W, + W, = 1 and that W, W, > 0. If
W, = 1 and W, = 0 the flux (72) gives the Godunov’s method (first-order upwind); if

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 7. Illustration of the waF intercell flux for the linear advection equation.

W, =0 and W, =1 the flux (72) gives a downwind method, which is unstable. The
upwind method is stable but very inaccurate. If the weights in (72) are unaltered
then the Lax—Wendroff method results; this is second-order accurate in space and
time. In a sense the flux (72) is an average between a stable and an unstable scheme.
The weight W, (upwind) controls stability and the weight W, (downwind) gives higher
accuracy.

It is the inherent higher accuracy of the scheme given by (72) what produces the
spurious oscillations near high gradients. In what follows we present a mechanism for
eliminating the spurious oscillations.

(@) Wave-speed amplifiers
In the presence of high gradients or oscillatory data we need to reduce the role of
the downwind weight W, and increase that of the upwind weight W,. This can be
accomplished by altering the wave speed a (see figure 7) via a function 4 still to be
found. Generally, A will be greater than unity and thus we shall call these functions
amplifying functions or just amplifiers. In constructing these functions we shall make
use of the concept of total variation diminution, whereby spurious oscillations near
high gradients are eliminated by introducing artificial dissipation. Thus the functions
A are effectively numerical viscosity functions, but the process is not to be mistaken
with explicit artificial viscosity methods.
Set @ = Aa; the modified Courant number becomes

7V=AaAt/Ax = Av. (73)
The modified flux (72) becomes
vy = P auf + 51— 7) aud,,
or, as in (12) with N = 1 for the intercell flux
Fyyy = Haw +ault,) —auf,, —au?). (74)

To find the amplifying function 4 in (73) we consider first the case of positive speed
a. Two obvious bounds for 4 are given by the fully upwinding case (7 =1, W, =1,

Phil. Trans. R. Soc. Lond. A (1992)
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516 E. F. Toro

W, = 0) and the fully downwinding case (v = —1, W, = 0, W, = 1). Thus we choose 4
such that
—r <A<t (75)

Substitution of the modified intercell fluxes £, and F,_; according to (74) into the
conservative scheme (5) gives

wpt™t = =g {(ufyy — ) v A ] —udy) — A (el — )] (76)

On division through by «? , —u} and rearranging

Ly n 1/1 1
uzn u; =3? [—(—_Ai+‘>+Ai—l+_] (77)
ul | —ul r;\v 2 oy
with ro= (=)l — ). (78)

The ‘flow parameter’ r, is the ratio of the upwind change to the local change in the
conserved variable u.
A simple sufficient condition for avoiding overshoots or new extrema is

0 < (' —uf)/(ul, —uf) < 1. (19)

That is to say, the new value u"*! lies between the data values «? ; and «?. From
equations (77) and (79) it follows that

0< g (v —Ap)+4,.+v1 < 1, (80)

or =V (T = A )+ 4, < (2-0) VR (81)
It is convenient to restate the constraint given by the inequalities (75) as

L<A4;,,<v?', with L in [—v7'1] (82)

If A = 1 the original scheme is unchanged. If 4 > 1 then A4 is strictly an amplifying
function. In the analysis that follows we shall also admit the possibility of reducing
the wave speed, that is to say of increasing the role of the downwind part of
the scheme. The lower bound L in (82) is now open to choice within the interval
[—v 1 1]

The problem is to choose amplifiers 4,1 so that both inequalities (81) and (82) are
simultaneously satisfied. This can be achieved by taking

=Sy <yt [V#I_AH%?] < Sy, (83)
—viSL<A4 <ot (84)
with S,=L+1/v, Sg=2(1—v)/v% (85)

The analysis leading to (83)—(85) is based on the assumption that the speed a in the
model equation (12) is positive. For negative a the result is identical but v is replaced
by |v|. Hence the general case is

— 8y < I = A ] < Sp (86)
<L < Ay <Y (87)
with S, and Sy redefined as
Sy=L+1/Pl, Sy =201/} (88)
Phil. Trans. R. Soc. Lond. A (1992)
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A(r)

Figure 8. VD regions in the r4-plane for war method as applied to the
linear advection equation.

Now the main inequality (81) reads

1 111
= < [ Ai+%]+Ai—§<

EA

2—
-

Clearly, the choices (86) and (87) satisfy (89) automatically, whose bounds we
now analyse. For convenience, we ignore subscripts of the functions 4 and the
parameter 7.

From (86) —8; < » [y t—A]. If » > 0, then —8,» < [v]*—A4, or

(89)

A<Ay, Ay,=P"+8y7. (90a)

If » < 0, then
The upper inequality (89) gives A>4,. (900)
Az g, Ag =PI =Sgr, if >0, (91a)
A<Ag, if r<O0. (91b)

For L > —1/|v| in (82) there are two TVD zones Z;, and Zy on the » — 4 plane. These
are shown in figure 8. The horizontal bounds are 4 = L and A = 1/|v|. There are also
two straight lines A; and Ay with positive and negative slopes respectively. These
lines are defined in (90a) and (91a).

The two TVD regions are, in set notation,

Z, ={(r,A) suchthat »<0,4>A4,,L<A<1/p}, (92a)
Zy ={(r,A) suchthat »r>0,4> Ay L<A<1/p}. (92b)

For the case L = —1/|v| the zone Z;, coalesces to the single line 4 = 1/[v|. This
means that if » < 0 only upwind differencing is allowed in this special case.

<
<

(b) Construction of amplifiers A
There are an unlimited number of choices for 4 = A(r), where r is the flow
parameter defined by (78). A simple way forward is to use the relationship that exists
between our amplifiers 4 and flux limiters B (Sweby 1984 ; Roe 1986) and given by
A= (1—=(1=p)B)/ V. (93)
For details see Toro (1989d).

Phil. Trans. R. Soc. Lond. A (1992)
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518 E.F. Toro

There exists an enormous amount of experience in constructing and applying flux
limiters B. We now profit from that experience and choose B directly to compute 4
in (93). A popular flux limit is the so-called MINBEE limiter with the associated A4(r)
given as

1/, r<
Ay == =Phr)/ 0
1, r =

0
<1, (94)

In analogy with the flux limiter terminology we call the function 4y in (94) MINA.
Another popular flux limiter is the so-called supPERBEE. The corresponding
amplifying function, which we call SUPERA, is

(1_2(1—‘1)‘))/'1)'7 r= 2:
(L=r(l=ph)/W  1<r<2,

Ag= L, p<r<i, (95)
(I=2r(1=pN)/I, O0<r<y
1/|VI7 A < 0.

Alternatively, orie can construct amplifiers directly. Various choices were tested by
Toro (1989d).

Figure 9 illustrates the performance of the oscillation-free version of the method.

The most important requirement for a function 4 is its performance in problems
other than the model equation w,+au, = 0, in particular for nonlinear systems of
hyperbolic conservation laws such as the Euler equations (1). This is the subject of
the next section.

(¢) Oscillation-free procedures for systems of equations

The procedures described in the previous section are, strictly speaking, valid only
for the model equation u,+au, = 0. For decoupled linear systems the extension is
trivial. The problem arises when dealing with nonlinear systems such as the Euler
equations. In this case the oscillation-free procedures are empirical.

Suppose we are solving the one-dimensional Euler equations (1). There are three
waves to take care of and consequently we must construct three amplifiers 4,, one
for each wave. Also, there are three fluxes, each one being affected by all three waves.
Moreover, for the linear scalar case the argument r of 4 is itself a function of the
conserved variable u (equation (78)).

Having computed A4, for each wave one then generalizes (74) to the system case
as follows:

(96)

_ , 1 ¥
iy = %[ﬁ}_’_mﬂ-l]_‘g XAy AF&@%
k=1
Compare the oscillation free flux (102) to the fully second-order flux (12). The
modification is remarkably simple. If one chooses to use version (14)—(16) of war

then the modified oscillation free averaged state V.1 in (15) becomes

_ I
Vi+§ = %[V;"{' Vil 9 2 Ay VkAVgli)é' (97)
k=1
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The war method for the Euler equations 519
- The computation of A, for each wave £k, is based on a flow parameter 7*) defined
as follows:
AQE/AQE, if v, >0,
AQIA/AQR, if v, <0,

i = (98)

where @ is a suitable flow variable. For the time-dependent Euler equations density
is a good choice for @ in (98); the specific internal energy is found to be even better,
but requires extra computations.

In (98) AQS*: A is the jump in @ across wave & in the solution of the Riemann problem
with data (4, U; ). We call AQ{%} the local jump. The numerators in (98) are the
upwind jumps in ¢ across the wave k. Their choice depends on the wave direction
(sign of v,). The flow parameter 7{* in (98) is the ratio of the upwind to the local
jumps in @ across the wave k.

The amplifier 4, is then simply

Ay = A(r{?), (99)
where 4 is any of the amplifying functions given by equations (94) and (95).

(d) An algorithm for the one-dimensional case

Here we summarize the main steps involved in the implementation of WAF as
applied to the homogeneous one-dimensional Euler equations (1).
Having specified the domain length, the number of computing cells M and the grid
size Az the following operations are performed at every time step 7.
1. Solve the Riemann problem with data (U], U,,) and store:
(i) the wave speeds into WS(1,14), WS(2,7), WS(3,1);
(ii) the p-jumps across each wave into WJ(1,:), WJ(2,%), WJ(3,1);
(iii) the star-state values p*, u*, p¥f and pf into SS(k,7), k=1 to 4.
Here the loop runs from ¢ = —1 to M +1.
2. Apply the cFL condition, based on true wave speeds given by the solution to
local Riemann problems, to find At.
3. For each 4,1 =0 to M,
(i) compute the local Courant numbers v, = WS(k,7) At/Ax, k = 1,3;
(ii) compute the amplifiers 4,, k=1,2,3;
(iii) modify Courant numbers 7, = 4, v;;
(iv) compute the intercell fluxes according to (96), say. Store values into
FI(1,7), FI1(2,1), FI1(3,7).

4. Advance to the next time level n+ 1 using the conservative formula (5).

5. Numerical results

Here we present some numerical results for one and two-dimensional test
problems.
(a) Test 1: a shock-tube problem

This very simple one-dimensional test problem has exact solution and this will be
used to assess the quality of the numerical solution. This problem simulates the flow
in a shock tube of unit length with a diaphragm at x = } separating a left (L) and
right (R) states given by

pr, =10, pr=0125, wu;, =0, ug=0, p,=10, prg=01, vy=14.
Phil. Trans. R. Soc. Lond. A (1992)
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Figure 9. Comparison of the exact (line) and war numerical (symbol) solutions to the linear
advection equation at four different times: (a) t = 0.05; (b) t = 0.1; (¢) t = 0.15; (d) t = 0.2. The
initial condition is a squared wave and the amplifier used is the upper limit of Z, joined to the lower
limit of Zj in figure 8.

Results are presented in figures 10-18. The numerical solution in all cases was
obtained using M = 100 cells and a oFL coefficient of 0.8. Results are displayed at
time f = 0.25 units; the numerical solution is shown in symbols while the exact
solution is shown by a full line.

Figure 10 shows the numerical solution obtained by using the war method with
the exact Riemann solver and the amplifier SUPERA (equation (95)). The quantities
shown are the density, pressure, particle velocity and specific internal energy. The
smooth part of the flow is very accurately resolved, including the head and tail of the
left-running rarefaction. The right-travelling shock wave is resolved with two
interior points. This is comparable to the resolution of other rp methods such as
Roe’s second-order method. The contact discontinuity is resolved with three interior
points, which is satisfactory. Contacts, due to their linear character, are more
difficult to resolve sharply than shock waves.

Figure 11 shows the results obtained when using the Godunov’s method, which is
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http://rsta.royalsocietypublishing.org/

A
/, A
4 N

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

i \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

The war method for the Buler equations 521

density pressure

o

velocity internal energy

Figure 10. Comparison between the numerical (symbol) and exact (line) solutions for Test 1.
The numerical results correspond to using WAr with the exact Riemann solver and SUPERA.

0 1 0 1
pressure
17 3
B
o
(o]
0 T 10 1
velocity internal energy

Figure 11. Comparison between the numerical (symbol) and exact (line) solutions for Test 1.
The numerical results correspond to using Godunov’s method with the exact Riemann solver.

only first-order accurate. The smooth parts of the solution are, as expected from a
first-order method, not accurately represented. The shock wave is quite sharply
resolved with about five interior points but the contact discontinuity is ruined, it has
eighteen interior points. Compare figure 11 with figure 10. Such comparison is
justified for two reasons. First, it illustrates the accuracy of the war method and
second, the war method utilizes exactly the same Riemann problem as the
Godunov’s method and yet it gives much better results.

Figure 12 shows the result obtained by the fully second-order version of waF, that
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0 . 1 0 . 1

velocity internal energy
Figure 12. Comparison between the numerical (symbol) and exact (line) solutions for Test 1. The
numerical results correspond to using oscillatory version of war (4 = 1) together with the exact
Riemann solver.

0 density 1.0 pressure 1
1 ' 39

1 —
0 1 0 1

velocity internal energy

Figure 13. Comparison between the numerical (symbol) and exact (line) solutions for Test 1.
Numerical results were obtained by Roe’s method with the flux limiter SUPERBEE.

is when the amplifier 4 is identically unity. These results are very similar to those
obtained by the Richtmyer—Morton method without artificial viscosity added. They
are quite clearly unacceptable.

Figure 13 shows the result obtained by Roe’s method. Compare with that of figure
10. The results are virtually identical. Some differences can be observed. The
resolution of the tail of the rarefaction in the war method is slightly better; this is
more apparent in the velocity and density profiles. Also, near the contact
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B density 10 pressure 1
14 35

1 )
0 1 1

velocity internal energy

Figure 14. Comparison between the numerical (symbol) and exact (line) solutions for Test 1. The
weighted-average state version of war with the exact Riemann solver and suPERA is used.

11

pressure

0 1

1 0

velocity internal energy

Figure 15. Comparison between the numerical (symbol) and exact (line) solutions for Test 1.
waF with the two-rarefaction approximate Riemann solver and supERa is used.

dlscontlnmty Roe’s method shows a slight over/under shoot, Whlch is more clearly
seen in the internal energy profile.

Figure 14 shows the results obtained by weighted-average state version of the war
method as defined by equations (14)—(16) using the exact Riemann solver and
sUPERA. These are to be compared with the results of figure 10. To plotting accuracy
these are identical. At this stage, however, we are not certain whether this version
is, despite its computational attractions, as robust as the weighted-average flux
version (12) and (13). More numerical experimentation is required.

Figure 15 shows the war numerical solution using an approximate Riemann
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1

0 density 10 pressure 1
1 -
0 1 1

velocity internal energy

Figure 16. Comparison between the numerical (symbol) and exact (line) solutions for Test 1.
waF with the two-shock approximate Riemann solver and sUPERA is used.

0 density 10 pressure 1
1 -

o}

] )
0 1 1

velocity internal energy

Figure 17. Comparison between the numerical (symbol) and exact (line) solutions for Test 1.
wAF with the reinterpretation of Roe’s approximate Riemann solver and sUPERA is used.

solver. Compare with figure 10. To plotting accuracy the results are indistinguishable.
The Riemann solver used is what we called the two-rarefaction, or TR approximate
Riemann solver given in §3b.

Figure 16 shows the waFr numerical solution when using the two-shock, or Ts,
approximate Riemann solver described in §3¢. Again the numerical results, at least
for this test problem, are identical to those obtained when using the exact Riemann
solver. ‘

Figure 17 shows the results from using WAF in conjunction with the reinter-
pretation of Roe’s Riemann solver presented in §3e. Compare the results to those
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D
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Figure 18. Comparison between the numerical (symbol) and exact (line) solutions for Test 1. war
with the HLL and the isentropic-wave speed estimates is used. The amplifier is SUPERA.

of figure 10 (wAF with the exact Riemann solver) and to those of figure 13 (Roe’s
method). The resolution for all three waves is very satisfactory. There is a slight
over/under shoot at the tail of the rarefaction but despite this the solution there is
more accurate than that of Roe’s method.

Figure 18 shows the results obtained when using the war method in conjunction
with the Harten—Lax—van Leer, or HLL, approximate Riemann solver described in
§3f. The two-rarefaction approximation applied to the isentropic equations is used
to obtain the wave speed estimates required by the HLL solver. The isentropic
estimates appear to work very well. Tests on more severe problems confirm this. As
anticipated, this Riemann approximation can give accurate resolution of the
acoustic waves (rarefaction and shock) but gives very poor resolution of contact
discontinuities, just as first-order methods (see figure 11). Computationally, however,
the simplicity of this approximate Riemann solver, especially for the wave speed
estimates, has its attractions.

(b) Test 2: a blast wave problem

This one-dimensional test problem consists of a tube 5.0 m long with shock-tube
data on the left and right of a diaphragm placed at @ = 0.5 m. The initial densities,
velocities and pressures are

pr=10kgm™3 pp=10kgm™® u,=0ms™, uy=0ms?

pr,=108Pa, py =10°Pa, y=14.

The breakup of the initial discontinuity results in a shock wave travelling to the
right followed by a contact discontinuity and a left-travelling rarefaction wave. The
left rarefaction reflects from the left solid stationary wall and overtakes both the
right travelling contact and shock. As a result the shock wave attenuates as time
evolves. Problems of this kind are quite common in studying blast-wave attenuation.
Figure 19 shows numerical results for density, pressure, velocity and specific internal
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Figure 19. Comparison of numerical results for Test 2 between waF (line) and the random
choice method (symbol and dashed line).

energy at time ¢ = 0.65 ms. The full-line profiles show the war solution using the
exact Riemann solver and the amplifier sUPERA; the symbols show the solution
obtained by the random choice method (rcm). For both methods we use M = 1000
cells with cri coefficient of 0.8 for war and 0.5 for rem. The agreement is good. A
virtue of Rem is that it produces perfect discontinuities for one-dimensional problems
but their positions have a random error; the random errors of rcm will also be
apparent in the smooth parts of the flow as seen in figure 19. war on the other hand,
will smear discontinuities by representing them by one to two interior points but,
given its conservative character, the positions of the discontinuities are correct. Also,
the representation of the smooth parts of the flow given by war is superior to that
of rom. However, the main advantage of wAF over rom is manifested in
multidimensional problems for which rRcm does not work at all.

(c) Test 3: a cylindrical explosion

In this test problem we solve the time-dependent two-dimensional Euler equations
on the domain [0, 2] x [0, 2] in the ay-plane. The initial conditions are those of Test
1 with 4 = v = 0; the region of high pressure and high density is the circle of radius
0.35 centred at (1,1). Cells covered partly by both sets of data are re-initialized in
area-weighted fashion. The solution of the problem consists of three waves, namely
an outward travelling shock followed by a contact discontinuity and rarefaction
wave travelling toward the centre. Both the shock and the contact will attenuate as
time evolves and the mechanism that allows this is the presence of rarefaction waves
following both the contact and the shock and so the post-shock and post-contact
states are not horizontal as in the one-dimensional case. Figure 20 shows the pressure
distribution at time 0.3 units and figure 21 shows the density distribution at the same
time. The expected symmetry of the circular waves is very well represented in the
numerical solution. Both the shock and contact are sharply resolved.

Along radial distance the problem is one-dimensional with geometric source terms.
Figure 22 shows a comparison between the rRcM solution of the one dimensional
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Figure 20. Computed pressure distribution for Test 3 using war with the two-rarefaction
approximate Riemann solver and SUPERA.

problem and the war two-dimensional solution along one radial line. The quantities
shown are pressure, density and radial velocity. For the wAF solution we have used
50 cells only while for rem we have used 500. Good agreement is observed.

6. Conclusions

An up-to-date version of the war method has been presented. Significant
improvements and simplifications have resulted from experience gained in applying
the method to various problems. The particular features of the Euler equations,
perhaps the most prominent of all hyperbolic systems, have been exploited. Several
Riemann solvers that can be used with the method have also been presented.
Numerical examples in one and two dimensions, to partly validate the method, show
very satisfactory results. Further developments of the method of multidimensional
non-cartesian geometries are currently in progress.

Appendix A. List of symbols

U  vector of conserved variables p* pressure in the star region in the

V  vector of unknowns (e.g. con- solution of Riemann problem
served variables) u* particle velocity in the star

region

F  vector of fluxes in the x-direction p¥  density in the star region to the

G vector of fluxes in the y-direction left of the contact

v gamma, ratio of specific heats p¥  density in the star region to the

At time-step size right of the contact

Ax  spacing in z-direction a¥ sound speed in the star region to

F,,1 intercell numerical flux the left of the contact

A, speed of wave k a¥ sound speed in the star region to

v Courant number associated with the right of the contact
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Figure 21. Computed density distribution for Test 3. Computational details as in figure 20.
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Figure 22. Comparison of numerical results for Test 3 between the two-dimensional WAF solution
(symbol) and the one-dimensional random choice solution (full line). waF uses 50 cells and rem 500.
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wave k Zy, left TvD region
p  density Zg right TVD region
w  x-component of velocity A, amplifier function to wave k
v y-component of velocity r;  flow parameter to construct
p  pressure functions 4,
a  sound speed U* solution of Riemann problem
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